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Abstract. The transformation group theoretic approach is applied to present an analysis of the problem of unsteady
laminar free convection from a non-isothermal vertical flat plate. The application of two-parameter groups reduces
the number of independent variables by two, and consequently the system of governing partial differential equations
with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary
conditions. The possible forms of surface-temperature variations with position and time are derived. The ordinary
differential equations are solved numerically using a fourth-order Runge-Kutta scheme and the gradient method.
The heat-transfer characteristics for finite values of the Prandtl number Pr are presented, as temperature and
velocity distributions.

1. Introduction

The problem of two-dimensional laminar free convection about a semi-infinite flat plate in
steady-state conditions is a classical problem. This problem has been fully studied by many
investigators. Recently, unsteady conditions of motion and heating of bodies in fluids have
become increasingly important in certain applications for some engineering fields of
aerodynamics and hydrodynamics. Also a natural-convection flow has been generated due to
the temperature difference inside plastic greenhouses. Mankabadi [20] in 1988, considered
two pumping systems that can utilize a usable power, about 200W, for pumping under-
ground water for irrigation purposes. Therefore, it becomes necessary to pay more attention
to this problem.

Obviously, the introduction of time as the third independent variable in the unsteady
problem increases the complexity of the problem. Many attempts were made to find
analytical and numerical solutions, applying certain special conditions and using different
mathematical approaches. In 1950, Illingworth [17] studied the problem of unsteady laminar
flow of gas near an infinite flat plate. He obtained solutions which are available only with
Prandtl number unity and under transient conditions of step change in the surface tempera-
ture. The problem of transient free convection at the heated surface has been studied
extensively. In 1958, Siegel [29] obtained a solution of this problem using the method of
characteristics. The same problem was treated by many investigators: in 1961, by Gebhart
[14] using an integral method, in 1962, by Hellums and Churchill [16] and, in 1976, by
Callahan and Marner [10]. The latter authors dealt with the same problem with mass transfer
and used the finite-difference method to solve the governing equations as an initial-value
problem in three independent variables. In 1962, Menold and Yang [21] presented general
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asymptotic solutions for the same problem for a certain class of surface temperature
variations.

In 1969, Heinisch et al. [15], using an integral technique, obtained a system of partial
differential equations in two independent variables. This resultant system was again reduced
to a system of ordinary differential equations by two separate methods. The first was the
method of integral relations, the second was an explicit finite-difference scheme. Approxi-
mate temperature and velocity distributions were obtained by both methods. Finally, in
1987, Williams et al. [32] obtained semisimilar solutions for the unsteady free-convective
boundary-layer flow on a vertical flat plate. They used an implicit finite-difference method.
Solutions were obtained for a number of possible surface-temperature variations with time
and position. One will find attractive discussions of the subject in Brindley [8], Burmeister
[9], Mahnor [19], Mitchell [23] and Yang [33].

The mathematical technique used in the present analysis is the two-parameter group
transformation, which leads to a similarity representation of the problem. The fundamental
simplicity and power of this method are well known. Morgan [28], in 1952, presented a
theory which led to improvements over earlier similarity methods. In 1952, Michal [22]
extended Morgan's theory. Group methods, as a class of methods which lead to a reduction
of the number of independent variables, were first introduced by Birkhoff [4, 5]. He made
use of one-parameter group transformations to reduce a system of partial differential
equations in two independent variables to a system of ordinary differential equations in one
independent variable, the similarity variable.

Moran and Gaggioli [13, 26], in 1966 and 1968, presented a general systematic group
formalism for similarity analysis. They utilized elementary group theory for the purpose of
reducing a given system of partial differential equations to a system of ordinary differential
equations in a single variable. Similarity analysis has been applied intensively by Gabbert
[12]. For additional discussions on group transformations, one consults Ames [1-3],
Eisenhart, Bluman and Cole [6], Boisvert et al. [7], Moran and Gaggioli [24, 25] and [27]..

In this work we present a general procedure for reducing the number of independent
variables in the governing equations from three to only one independent variable. The used
technique is the two-parameter group transformation which is applied to both the governing
partial differential equations and the boundary conditions to assure the invariance condi-
tions. The resultant system of ordinary differential equations and appropriate boundary
conditions is then solved numerically using a fourth-order Runge-Kutta scheme and the
gradient method given in Zettl [35]. Of course, not all surface-temperature variations will
lead to a reduction to ordinary differential equations. Therefore, the only possible cases are
considered.

2. Formulation of the problem and the governing equations

Consider a natural-convective, laminar, boundary layer adjacent to a semi-infinite, vertical
flat plate. The plate is nonisothermal and is heated in an unsteady manner, consequently the
temperature distribution over the plate, T*, will be a function of the vertical distance x, and
the time t. The fluid is isothermal of constant temperature T*, far from the plate, such that
T* > T*, Fig. 1.

If we take L as some arbitrary reference length, LIU as a typical time, where U=
{gfL(T* f - T*)} 1 /2 is a typical velocity with g the acceleration due to gravity, /3 is the
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Fig. 1. Physical model of unsteady laminar boundary layer in free convection on a hot vertical flat plate.

volumetric coefficient of thermal expansion and T* f is some arbitrary reference tempera-
ture, along with the application of the Boussinesq and boundary-layer approximation, the
equations of motion may be written as

du dv
-+-=O,dx dy

du du du d2u
-- + u + =T+ 2
dt dx dy dy

dT dT dT 1 d2T
-+u + -+V- 2
dt dx dy Pr dy2

with the boundary conditions

u=O, v=0, T= T(x,t) aty=0,

u=O, T=O as y- +

(2.1)

(2.2)

(2.3)

(2.4)
0,

where x = x*IL, y = y*(Gr)"41L, u = u* U, v = v*(Gr)l'4 /U, Gr = gL 3 (T*,rf - T)v 2 is
the Grashof number, v is the kinematic viscosity, Pr = va is the Prandtl number, and a is
the thermal diffusivity.

From the continuity equation (2.1), there exists a non-dimensional stream function
qi(x, y, t) such that

dql d '
U = d V = -d '

which satisfies equation (2.1) identically.
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If we introduce the non-dimensional temperature defined by

0= TITw,,

equations (2.2) and (2.3) become

2- + --- OTd + = T +-

Oy t dy dy x dx dy2
W y3

at + t ) (+ 'y(T. a + d T

with boundary conditions

d dO 1 d 20
x y Pr T y2 

dy (X,O,t)= (x, O,t)=O,
dy Ox

lim d (x, y, t) = O,
Y- dy

O(x, , t)=1,

(2.7)

3. Solution of the problem

The method of solution depends on the application of a two-parameter group transformation
to the system of partial differential equations (2.5) and (2.6). Under this transformation the
three independent variables will be reduced by two and the system of equations transforms
into a system of ordinary differential equations in only one independent variable, which is
the similarity variable.

3.1. The group systematic formulation

The procedure is initiated with the group G, a class of transformation groups of two-
parameters (a,, a2 ) of the form

G: s= Cs(al, a2 )s + Ks(al, a2 ), (3.1)

where s stands for x, y, t, i, Tw, 0 and the C's and K's are real-valued and at least
differentiable in each real argument.

3.2. The invariance analysis

To transform the differential equations, transformations of the derivatives are obtained from
G via chain-rule operations:

s = (C /C )s ]
s - = (CS/CICJ)si i= x, y, t; j=x,y,t; and k=x,y,t
S-j- = (Cs/C C C )Sijkik \ l k

(3.2)

where s stands for ¢, Tw and 0.

(2.5)

(2.6)

lim (x, y, t) = O .
y-. 
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Equation (2.5) is said to be invariantly transformed whenever

, + Alyi,- Ivy - OT, - P5y-- = Hl(al, a2)[1y, + qIyyx - kyy -OT- yyy] , (3.3)

for some function H1 (a1 , a2 ) which may be a constant.
Substitution from equations (3.1) into equation (3.3) for the independent variables, the

functions and their partial derivatives yields

[C/CYCt]jy t, + [(C )2 /(C) 2Cx]ty,4yx- [(C )2I(Cy)2cx] ,xlyy

- [CC Tw]OTw - [CO/(C)3]yy, - R

= Hi(a1 , a2 )[ity, + ,Oy Oyx - x yy - Tw - yyy], (3.4)

where

R1 = [C°KTw]O + [CTwK°] T .

The invariance of (3.4) implies R1 = 0. This is satisfied by putting

K ° = KT = 0 (3.5)

and

[C*/CYC'] = [(C,) 2 /(Cy)2Cx] = [C°CT ] = [C/I(CY) 3] = H1(a1, a2 ) . (3.6)

In a similar manner the invariant transformation of (2.6) gives

[CoCTI/C'][TwO, + O(T ) ] + [ C TC C/CYCx][T.wyOx + Oe4 y (T w) x - T X y]

1 [CTCO(C) 2]TwOyy - R2 = H2(a,, a2)[T,,O + (T)t + TyOxPr

+ Y(T) - TWIXyw - TOxYY], (3.7)

where

R2 = [KT CI/C']O, + [K CT IC ](T.), + [KT C CI/CYC x]qyox

+ [K C C T /C C ]qy(Tw)x - [KTwc°c/cYCx]qxOy

- Pr [K T CI(Cy)2]Oyy (3.8)

For invariability, we should have

[cTC/ Cct] = [CTWC*CO/ CYCX] = [CTCol(cY)2] = H2(a1, a2) , (3.9)

and R2 0, which is satisfied in accordance with (3.5).
Moreover, the boundary conditions (2.7) are also invariant in form, whenever the
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condition KY = 0 is appended to (3.5), (3.6) and (3.9). It is obvious that when KY = 0, the
transformation of O(x, 0, t) = 1 implies that (x, 0, t) = 1, which is only satisfied if

Co = 1. (3.10)

Combining equations (3.6) and (3.9) and invoking the result (3.10), we get

C = CYC , Ct = (C) 2 , CC/(CY) 3
. (3.11)

Finally, we get the two-parameter group G, which transforms invariantly the differential
equations (2.5), (2.6) and the boundary conditions (2.7). The group G, is of the form

xi = [CYC*]x + Kx

Gs{ = [CY]y
t= [Cy]2t + K(3.12)

+ = [C] + K"
Tw = [CI(Cy) 3 ]Tw

= 

3.3. The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of a system
of ordinary differential equations (similarity representation) in a single independent variable
(similarity variable). Then we have to proceed in our analysis to obtain a complete set of

absolute invariants. In addition to the absolute invariants of the independent variables, there
are three absolute invariants corresponding to the three dependent variables ¢f, T and 0.

If 7- = ,(x, y, t) is the absolute invariant of the independent variables, then

gj(x, y, t, , Tw, ) = F(rl(x, y, t)), j = 1, 2, 3,

are the three absolute invariants corresponding to qi, T. and 0. The application of a basic
theorem in group theory, see [27], states that: a function g(x, y, t, $i, 0, T.) is an absolute
invariant of a two-parameter group if it satisfies the two first-order linear differential
equations:

(ax + a2 ) g +(g3Y +
a4) at + (+ 7

t + 6) (' 7 + a8 ) 

+ (y + a) + (a,Tw + 12) = ,

~dog~~ dg o T ~ ~ ~ /~~~8)~(3.13)

(/31X + 2) X + ( 3 Y 
+ 3

4 ) y ( 5 t + 6 ) t +( 8) 

dg gy d 
+ (90 + 1 0 )g+(,BT, + 1 2 ) dT = 0,do T,

where

Gi: �
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a, -(dCX/dal)(a o, a°), j31 (dCX/da 2)(a °, a),

a2 (dKx/dai)(a i, a) , etc.;

(a° , a° ) denotes the value of (al, a2) which yields the identity element of the group.
At first, we seek the absolute invariants of the independent variables. Owing to equations

(3.13), (x, y, t) is an absolute invariant if it satisfies the two first-order partial differential
equations

(a1 x + a2 ) + a3Y + (a 5 t+ a6 ) 7 = (3.14)

(3.14)

((lx + 2 ) x +3Y + (5t + 36) = 0,

where a4 = 134 = 0, since KY = 0.
Any particular group G' possesses a characteristic set of a's and fi's; and consequently a

characteristic set of absolute invariants which are yielded by (3.13).
For the two-parameter group Gs there is one and only one functionally independent

solution to (3.14), i.e., the coefficient matrix of {d7l/dx, dI7/dy, d/dt} must have rank two.
The matrix has rank two whenever at least one of its two-by-two submatrices has a
non-vanishing determinant. This condition is met with whenever at least one of the following
conditions is satisfied

A31X + A32 '0, A35t + A36 '0 , A15xt + A16 x + A25t + A26 #0, (3.15)

where

Ai -aij -ajpi, (i, j = 1, 2, 3, 5, 6).

The system (3.14) can be rewritten in terms of the A's:

(A31x + A32) d + (A3 5t + A36) =0,
36x t (3.16)

(A31x + A32) y -- (A15xt - A16x + A25t + A26) d7 = 0.dy at

Referring to the transformation group G1 given by (3.9), and making use of the definition
of the a's and /'s and invoking that a5 = 2a 3 , 5 = 2 3, we get

A35 = a 3165 - a 513 = 0. (3.17)

According to the conditions (3.15), three main cases arise:

Case (1): none of the coefficients in (3.16) vanishes.

Subcase (1-a): A31 =0, =0,35 32 # 0, 36 0.

Subcase (l-b): A31 # 0, A35 = 0, A36 0.

349
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Subcase (1-c): A31 # O, A3s 0.

Subcase (1-d): A31 = 0, A35 # 0, A32 0.

Invoking the result of (3.17), the cases for which A35 # 0 are not considered.

Case (2): only one of the coefficients in (3.16) vanishes identically.

Subcase (2-a): (A31x + A32 ) = 0, (A35t + A36) '0 ,

(Al 5xt + A16x + A25t + A2 6)0O .

The result obtained from equation (3.16) corresponding to this case is d 1qldt = 0. In fact, this
is the case representing the steady-state conditions.

Subcase (2-b): (A31x + A32 ) Z0, (A35t + A36) 0,

(A,,xt + A16X + A25t + A26)0 .

From equation (3.16) this yields a solution 71 = 77(y, t).

Subcase (2-c): (A31x + A3 2)d0, (A35t + A36)i0 ,

(A 15xt + A16x + A25t + 126) O.

From equation (3.16), it can be proved that the vanishing of (Al5xt + A16x + A25t + A26)
yields a solution = 7,(x, t), i.e., independent of y; this is unacceptable in view of the
boundary conditions.

Case (3): two of the coefficients in (3.16) vanish identically. As pointed out above, any case
corresponding to the vanishing of (A,,xt + A16x + A25t + A26) will not be considered. In this
case we may have (A31x + A32) = O, (A35t + A36 ) 0, (A15xt + A16x + A25t + A26 ) #0. Making
use of the definition of the A's in (3.15), and invoking that A35 = 0, this case corresponds to
A31 = A32 = A35 = A36 = 0, which implies that A15 = A25 = A16 = A26 = O0 which reduces to the
case of vanishing of (A15 xt + A16x + A25t + A26), which is again unacceptable.

Now, our attention will be focussed on those cases which are consistent with the
characteristics of the group and with the boundary conditions.

Case (1)

Subcase (1-a): In this case the following general procedure is utilized. According to a
well-known standard technique for linear partial differential equations, the first equation of
(3.16) has the general solution

1 = f(y, (x, t)), (3.18)

where f is arbitrary and is any function such that (x, t) = constant provides a solution to
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dx dt
-x = dt (3.19)

A32 A36
(3.19)

The solution of this equation gives

e(x, t) = A36x - A32 t = constant . (3.20)

However, to obtain a solution to the first equation of (3.16) it is also necessary, of course, to
satisfy the second equation of (3.16). Thus, with (3.18), the second equation of (3.16)
becomes

f (A 1 xt + A1 6 x + A25 t + A2 6 oe) f

ay A31X + 32 at dg

Inasmuch as is independent of y, the coefficient of f/ad,

(As5xt + A16X + A25t + A26 ) (3.22)
A31 + A32 )at 

is also independent of y. Thus for f to be a function of y and , it is necessary for the
coefficient to depend only on , i.e., equation (3.21) can be rewritten as

Y f-h(6) df=0. (3.23)dy -)

where h is given by (3.22).
Now, we are seeking solutions of equation (3.23) and consequently of equations (3.16) in

the form

f = b(yH(f)), (3.24)

where H( ) is given by the ordinary differential equation

dln H
h(5) d 1, (3.25)

obtained via substitution of (3.24) into (3.23). The solution of (3.25) gives

H() = exp( h(- d (3.26)

Substituting from (3.20) into the expression of h given by equation (3.22) and using A31 = 0,
we get

h = -(Al5xt + A16x + A25 t + A26). (3.27)

Since h is determined by alone,

a dh], a ah]X at] (3.28)o- dx lt x a x dX
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With equations (3.20) and (3.27), equation (3.28) becomes

A36
(At + A 6 ) + (A 5x + A25 ) A36 = 0 (3.29)A32

The conditions necessary for (3.29) to be satisfied are A15 = 0, and A36A25 = -A 16A3 2. These
can easily be satisfied, since the a's and /3's and consequently the A's can be chosen
arbitrarily. Thus,

h()) -(6A16 + A26) (3.30)

Then, with (3.26),

H(e) = exp (-f (A16/A36) + A26) (3.31)

Integration of (3.31) yields

H(e) - (A16 x + A25t + A26)-A36/A16, (3.32)

provided A16 # 0. For the case of vanishing A16, equation (3.31) gives another solution. The
characteristics of the present transformation group in the case of vanishing A16 imply that
A36 = 0, which contradicts the conditions of the present case. The absolute invariant ri can be
obtained from equations (3.18) and (3.24) as

ql = (y(Ax + Bt + C)-1/2 ) , (3.33)

where the constants A, B and C stand for A6, A2 5 and A26 respectively, and the exponent

(-A36/A16) = - 12

Without loss of generality, the function 4 can be taken to be the identity function. Thus,

l = ylT1(x, t), (3.34)

where

7r(x, t) = (Ax + Bt + C)- 11 2 . (3.35)

Subcase (l-b):
When dealing with this case and following the same procedure, it is found that the

characteristics of the group of transformations can not satisfy the conditions of this subcase.

Case (2)
Subcase (2-b):

Applying the conditions of this case to equations (3.16), we get d7/dx = 0, and hence
(3.14) reduces to
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a3y + (at + a6 ) = 0,ay at

f33y + ( 5t + P6 ) d- = 0.

Using the standard technique for linear partial differential equations, --7-,(y, t) can be
obtained as a solution of (3.36) of the form

77 = y'r2(t), (3.37)

where

=2(t) = K(alt + b1)- 1 /2 , (3.38)

a, = a, = /3, and b = a6 = /6 are constraints. The arbitrary constant K may be taken as
unity. The exponent is -a 3/a5 = -33/35 = -1. Then the absolute invariant for this case will
be

71 = y(alt + b) -112 . (3.39)

In the next step, we have to obtain the absolute invariants corresponding to the dependent
variables 6A, T, and 0. From (3.10), 0 is itself an absolute invariant. Thus,

gl(x, y, t; 0) = (77) . (3.40)

By observation of (3.13), it is apparent that any function g2 (x, t; ) which satisfies

(alx + a 2) x + (a5t + a6 ) t + (a7ti + a8 ) dg = 0,ax at aq~

(11x + P2) -x 
+ (P35t + 6) + (37 +/38) =, (3.41)

provides a solution to (3.13). The solution of equations (3.41) gives

g2(x, t; ) = (Plr/F(x, t)) = F(q). (3.42)

In a similar manner, we get

g3 (X, t; T) = 02(TWo(x, t)) = E(77 ), (3.43)

where F(x, t) and o(x, t) are functions to be determined. Without loss of generality, the O's
in (3.42) and (3.43) are selected to be the identity functions. Then we can express the
functions (x, y, t) and T(x, t) in terms of the absolute invariants F( 77) and E(7 7 ) in the
form

F(x, y, t) = F(x, t)F(r7 ), (3.44)

353
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Since w(x, t) and Tw(x, t) are independent of y, whereas 71 depends on y, it follows that E in
(3.45) must be equal to a constant. Then (3.45) becomes

Tw(x, t) = Tow(x, t) . (3.46)

The forms of the functions F(x, t) and co(x, t) in (3.44) and (3.46) respectively, are those
for which the governing equations (2.5) and (2.6) reduce to ordinary differential equations.

4. The reduction to ordinary differential equations

As the general analysis proceeds, the established forms of the dependent and independent
absolute invariants are used to obtain ordinary differential equations. Generally, the
absolute invariant 77(x, y, t) has the form

' = yr(x, t) , (4.1)

where the function ir will be assigned its own form corresponding to each specified case.
Substitution from (3.40), (3.44) and (3.46) into equation (2.5) yields, after dividing by

rT 3 and rearranging the terms,

F+1 dr) (FF F2)( r d) F 2 1 d r) F' 1 d) (F"+ F')
F,, + 1 (FF" F,2) F

+ ( r3 ) 0 = 0, (4.2)

where the primes refer to differentiation with respect to q7.
Inasmuch as the first term of (4.2) has the coefficient 1, for (4.2) to reduce to an

expression in the single independent variant q7, it is necessary that the remaining coefficients
be constants or functions of 71 alone. Thus, since r, r and w are independent of y,

1 Or
3 = C1, (4.3)

r dx
3= c, (4.4)

1 OF
F-2 - = C ) (4.5)

13dIr = 4 (4.6)

rIT3 =C5 (4.7)

where the C's are constants to be determined for each individual case corresponding to each
set of absolute invariants. It follows, then, that (4.2) may be rewritten as

F" + (CIF- C4 q)F"- (Cl + C 2)F' 2 - (C3 + C4 )F' + C 5 0 = 0. (4.8)
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Following the same procedure, substitution of i, 0, T and their partial derivatives in
terms of F, , w and 7 into equation (2.6) yields

p 0" + (CIF - C4 )O' - (C6 F' + C7 )0 = 0 , (4.9)

where the constants C6 and C7 are given by

C6 = , (4.10)Im ax

1 dw
C7 = 2 - ' (4.11)

The coupled nonlinear ordinary differential equations (4.8) and (4.9) with the following
boundary conditions:

F=F'=0, 0=1 at/=0, (4.12)

F'=O0, 0=0 as -- ,

are now the new system representing the problem instead of equations (2.5), (2.6) and (2.7).
It remains to utilize each of the 7's in turn with (4.3) to (4.7) and (4.10), (4.11) to

evaluate the C's appearing in the ordinary differential equations (4.8) and (4.9) and
consequently to evaluate the corresponding expressions of the functions F and w.

5. Subcase (-a): v1 = yrl(x, t) = y(Ax + Bt + C)- 112

For this case, it follows that

d7r, A 3 d7T1 B 3

ax 2 7r' at 2(5.1)

which on substitution into (4.3) to (4.6) yields

F(x, t) = 2C 1 (Ax + Bt + C)/2, (5.2)

C1 = -C2 , (5.3)

C4 = - 2 (5.4)

Coupling of equations (4.5) and (5.4) gives

C3 = - C4 = 2 · (5.5)

The constant C5 in equation (4.7) may be taken to be unity. This can be achieved without
restricting the expression of Tw. Thus,

355
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2C1/A
w (Ax + Bt+ C)' (5.6)

which is the possible form of the surface-temperature variation with respect to x and t
corresponding to the present case. Substitution for the established expressions for ir, F and
w into (4.10) and (4.11) gives

C6 = -2C , (5.7)

C7 = -B. (5.8)

Substituting the above-obtained values of the constants into equations (4.8) and (4.9), we
get

F"+ (CF + ) F" + = 0, (5.9)

Pr + (C,F + n 0'+ (2C,F' + B) =0, (5.10)

with the boundary conditions given by (4.12).
We scale the unknown constant C, out of the equations (5.9) and (5.10) by writing

F= C-3/4F, = C 11 4 , B= C2B, (5.11)

assuming that C, > 0 which is the only physically realistic possibility, we get

F"'+ + F + F" + O = 0, (5.12)

Pr + (F + B 1) 0 + (2F' + B)O = . (5.13)

Here the "^"s have been discarded, and the appropriate boundary conditions (4.12) are
unaltered.

For the above case, the boundary-layer characteristics are:

(i) The vertical velocity

0¢_ 2u= y F' . (5.14)
ay A

(ii) The horizontal velocity

ado */F' -F
v =-ax (Ax + Bt + C)1/ 2 (5.15)

(iii) The surface heat flux

2
q = A(Ax + Bt + C)3 /2 [-'(0)].
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For the case of large values of B, write

= (e) , F= B-3/20( ) and : = B-I271, (5.17)

in (5.13) and let B--. Then one obtains

1 0 " + ' +0 =0 (5.18)
Pr 2

with the boundary conditions,

0(O) = 1, 0(x) = 0 (5.19)

In this case a solution of (5.18) satisfying the boundary conditions (5.19) does not exist,
which indicates that large values of B should not be taken into consideration.

6. Subcase (2-b): q = yir 2(t) = y(alt + b) - 1/2

For this case, it follows that

d7r2 drt2 _ -a 1/2-= , 37 2 (6.1)ax dt (at + bl)3 2 (6.1)

The same procedure is adopted to evaluate the constants and to deduce the expressions for r
and w corresponding to this case.

From (4.4) and (6.1), it is seen that C2 = 0, and integration of equation (4.3) yields

(x, t)= (Cx + b2) (6.2)
(alt + b)/2

where b2 is the constant of integration. Substitution of r, r2, adFdt and dr21dt into
equations (4.5) and (4.6) yields

C3 = C4 = - 2 (6.3)

Assigning the value unity to C5 in equation (4.7), we get

Clx + b,
T0ow(x, t) = Tw(x, t) = ( + b , (6.4)

which is the possible form for the surface-temperature distributions as a function of x and t
corresponding to this case.

In a similar manner, using the above expressions for i 2 , r and o in equations (4.10) and
(4.11), we get

C6 = C and C7 = -2a1 . (6.5)
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The ordinary differential equations representing this case are now obtainable by substitut-
ing the values of the constants C,, C2, ... ., C7 into equations (4.8) and (4.9), which yields

F"' + (CF + a' r) F"- C1F'2 + a1 F' + = 0, (6.6)

0Pr + F a'0' - (CF' -2al)O =0, (6.7)Pr 2

with the boundary conditions given by (4.12).
We scale the unknown constant C1 out of the equations (6.6) and (6.7) by writing

F = C-3/4F, r = c-1 1'4, a, = C1' 2a,, (6.8)

assuming that C > O0, which is the only physically realistic possibility. We get

F" + (F + 7) F" - F + a1F' + =0, (6.9)

Pr-+ (F+ 1) - (F'- 2a)O=0. (6.10)

Here, the ""s have been discarded, and the appropriate boundary conditions (4.12) are
unaltered.

The boundary-layer characteristics for this case are:

(i) The vertical velocity

x + b
u = t + b F . (6.11)

(ii) The horizontal velocity

(at + b F. (6.12)

(iii) The surface heat flux

x +b
q (a x + b 52 [-0'(0)] (6.13)

Special case of subcase (2-b):

This case arises as a special case of subcase (2-b) when the asymptotic solution is considered.
This situation is valid at large distance x. Therefore, all partial derivatives with respect to x
will be neglected. Applying this situation to equations (4.3) and (4.10), we get

C1 = C6 = 0. (6.14)

Utilizing equations (4.3) to (4.7), (4.10) and (4.11) yields
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r(t) = K,(alt+ bl)' , (6.15)

where K a is the constant of integration, which may be equal to unity and I is a real constant
given by

= C3 /a . (6.16)

Substitution of (6.15) into (4.7) and equating C to unity yields

Tw = (alt + b1 )r, (6.17)

where

3 C3 3
r1- = - 3 (6.18)

2 aa 2

Coupling equations (4.11) and (6.17) gives

C7 = ra . (6.19)

Substituting the obtained values of the contantsC C2, ... , C7 into equations (4.8) and
(4.9) respectively, yields

F"' + rlF" - al(l + r)F' + =, (6.20)

0" + a,6' - arO =0. (6.21)Pr 2

with the boundary conditions given by (4.12).
We scale the unknown constant a out of the equations (6.20) and (6.21) by writing

F= a32, '7 = a- 1 /2 , (6.22)

assuming that a, > 0, which is the only physically realistic possibility. We get

F"' + 2,F"' -(1 + r)F' + 0 = 0, (6.23)

1
0" + 0' - rO = 0. (6.24)Pr

Here the "^"s have been discarded, and the appropriate boundary conditions (4.12) are
unaltered.

Equation (6.17) gives the surface-temperature distribution corresponding to this case,
which is independent of x, i.e., uniform. It is a function of time t. The surface temperature
may increase or decrease with time according to r being positive or negative, respectively.

As a special case, for Pr = 1, equation (6.24) takes the form

0" + O,'- rO = O,

359

(6.25)
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of which the analytic solution, in tems of the confluent hypergeometric function, see Slater
[30], is

F(r + 1) e,/4 ( 1 1 \(7) = ((1/2) e-'Ur+ 2; (6.26)[(1/2) 22 4/

where r(r) is the gamma function.
The boundary-layer characteristics are:

(i) The vertical velocity

u = (t + bl)r+lF' . (6.27)

(ii) The horizontal velocity

v =0, (6.28)

which is evident from the continuity equation.
(iii) The surface heat flux

q = (t + b)('-1)/2[-O'(O)] (6.29)

7. Results and discussion

We shall deal with each case of the three derived subcases individually.

Case (1). Subcase (1 - a)

It was found that no numerical results could be obtained for the system of equations (5.12)
and (5.13), with the boundary conditions (4.12), corresponding to the subcase (1-a). This is
due to the fact that the boundary value of the temperature derivative, '(0) takes on infinite
values. Here, we may invoke the interpretation which has been given by Sparrow and Gregg
[31]. In their study of the steady case of temperature variation according to the relation
Tw - Tx = Nx, they investigated that for values of n < -0.6, 0'(0) is negative. Physically,
this corresponds to a heat transfer from the fluid to the wall. They stated that, for n < -0.6,
investigation of the mathematical model shows that there is an infinite source of energy in
the fluid at the leading edge, which does not, physically, exist. Also the case of large values
of B does not lead to any solution, as has been stated in Section 5.

For n-1.0, the tendency for 0'(0) to be infinite cannot be a physically realistic
situation. It could be interpreted from a mathematical point of view. The infinite value of 0'
at ,7 = 0 means that the vertical axis will be an asymptotic line for the temperature profile.
This contradicts the boundary condition (0) = 1. Therefore, it seems to be impossible to
obtain solutions for such cases for which, theoretically speaking, 0'(0) --> .

If the coefficient of t, B, is set to zero, this case reduces to the steady-state case with
non-uniform surface temperature varying inversely with x. As has been investigated by
Sparrow and Gregg [31], no solutions were obtainable for the case corresponding to Tw = xn ,
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for n < -0.8. Also, this case was not considered in the investigation of Williams et al. [32],
where they stated that it is of no practical interest. For the same reasons, this case is not
investigated here.

Case (2). Subcase (2-b)

Owing to equation (6.4), the variation of Tw with time depends on al, the coefficient of t.
Figures 2 and 3 show the effect of a1 on the temperature and velocity profiles respectively.
The results are obtained for Pr = 0.7 corresponding to a set of negative values of a,
(increasing temperature with time) and positive values (decreasing temperature with time).

From Fig. 2 it is noted that the temperature profile overshoots in the region of the
boundary layer near the plate. This phenomenon occurs for values of a1 > 1, and becomes
stronger as a1 increases. This means that this phenomenon is accompanied by those cases for
which Tw decreases rapidly with time. This phenomenon does not appear for any case
corresponding to a negative value of a,, i.e., increasing temperature with time.

In Fig. 3 the velocity profiles indicate the increase of the boundary-layer thickness
corresponding to decreasing values of a1.

Figure 4 shows the effect of the unsteadiness of Tw on the surface heat flux represented by
-0'(0). The relations between a and -'(0) are obtained for Pr= 0.7 and 1.0. These
relations indicate that the heat flux becomes negative for a near to and greater than unity.
At a1 = 0, the value of -0'(0) is almost unity for the case of Pr = 1. This corresponds to the
steady-state case with non-uniform surface-temperature distribution which varies linearly
with x, equation (6.4).

Figure 5 illustrates an upper bound for a as a function of Pr. It is clear that the upper
bound of a1 decreases as the Prandtl number Pr increases.

I 3 J + D

Fig. 2. Calculated dimensionless temperature profiles for fixed Pr = Fig. 3. Calculated dimensionless velocity
0.7 and varying values of Tw = (x + b2) /(0.4472a,t + b,) 2. profiles for fixed Pr = 0.7 and varying values

of T, = (x + b2 )/(0.4472a,t + bl)2.

1
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t1A

2

-1

- Pr 0.7

Pr. 1.0

Fig. 4. Plot of the surface heat flux, -'(0), against
(0.4472art + b,)2 .

a, for varying values of Pr where T = (x + b,)/

The effect of Pr on the boundary-layer characteristics is illustrated in Figs. 6 and 7. The
results are obtained for a = 0.4472 and Pr = 0.7, 2, 6 and 10.

For the temperature profile, Fig. 6 indicates the occurrence of the rapid increase in 0 near
the plate. This becomes more evident for larger values of Pr. Also, Fig. 6 shows that the
thermal boundary-layer thickness decreases for increasing values of Pr.

A

L.

1C
0

o10
C

0

L.
0.

5

I I I I I I I I I I
0.5

D

1.0

Fig. 5. The upper bound for a, as a function of Pr where T = (x + b2 )/(0.4472att + b,) 2 .

\I

II
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Pr:
Pr 100

--- 6.0
------ 2.0

.............. 0-7

2 3

Fig. 6. Calculated dimensionless temperature profiles for fixed Tw = (x + b2)/(0.4472t + b1)
2 and varying values of

Pr.

Figures 8 and 9 stand for the same study. The temperature and velocity profiles are
obtained for the case a = 1. This represents a case of surface temperature which varies
linearly with x and inversely with time.

The temperature profiles in Fig. 8 show that 0 becomes negative in a certain region of the
boundary layer and for values of Pr - 2. This phenomenon is known as temperature defect
which was investigated by Kulkarni et al. [18]. Yang et al. [34] also noticed the occurrence of
this phenomenon in their study of the free convection over an isothermal plate immersed in a
nonisothermal medium.

This phenomenon is accompanied by a reverse in the direction of the velocity known as

Pr= 0.7
- - - 2.0

- - - -- 6-0
............. 10.

Fig. 7. Calculated dimensionless velocity profiles for fixed T, = (x + b2) /(0.4472t + b,)2 and varying values of Pr.
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Pr:Pr- 10.0
---- 6.0

--- 2.0
...... 1-0

.............. 0.7

Fig. 8. Calculated dimensionless temperature profiles for fixed T = (x + b2) (t + b1)
2 and varying values of Pr.

flow reversal, as can be seen in Fig. 9 for the profiles corresponding to Pr = 2, 6 and 10. It is
shown that the flow reversal occurring in the profile corresponding to Pr = 2 is greater in
magnitude than that corresponding to Pr = 6 and 10. This situation is reversed for the case of
the temperature defect. It is also evident that both temperature and velocity do not exhibit
any defect for the cases corresponding to values of Pr = 0.7 and 1.

Figures 8 and 9 also indicate the occurrence of this phenomenon nearer to the plate for
larger Pr.

The validity of the relation between Pr and both the thickness of thermal boundary layer
and the flow reversal, as has been noticed in Figs 8 and 9, can be extended to expect that the
flow reversal will vanish for the limiting case Pr- > , the case of viscous oil. By contrast, the
reversal of temperature may be significant in this case. This behaviour may be consistent
with the definition of Pr as a physical property of the fluid.

0.25

Pr= 07

---- 10

--- -60
\...... 10.0

Fig. 9. Calculated dimensionless velocity profiles for fixed T = (x + b)l(t + b,)2 and varying values of Pr.
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Special case of (2-b)

Figures 10 and 11 represent the temperature and velocity profiles corresponding to the case
of linearly increasing surface temperature with time, i.e., r = 1. The results are obtained for
Pr = 0.7, 1, 2, 6 and 10.

The relation between Pr and the heat transfer at the surface is illustrated in Fig. 12. It
shows that -0'(0) increases with increasing Pr.

As it is given by equation (6.17), the surface temperature varies with time to the power r.
A set of negative and positive values of r corresponds, respectively, to decrease and increase
in Tw with time.

Figures 13 and 14 illustrate the temperature and velocity profiles corresponding to
r = -0.5, 0.5, 1 and 2.

in

Fig. 10. Calculated dimensionless temperature profiles for fixed Tw = t + b, and varying values of Pr.

Pr: 7
__ 1-0
--- 2.0

.------- 60
.V········· 0·)

Fig. 11. Calculated dimensionless velocity profiles for fixed T = t + b, and varying values of Pr.
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- e(o)
A

5

4

3

2

I ' I I I I II I I I Pr
1 2 3 4 5 6 7 8 9 10

Fig. 12. Plot of the surface heat flux, -'(0) against Pr for Tw = t + b,.

The effect of r on the heat transfer is investigated in Fig. 15 for a fixed Pr = 0.7. As it is
shown, the surface heat flux increases with r, i.e., for increasing T with time (positive
values of r). The value of -0'(0) is positive for all positve values of r. This situation is
reversed when r -0.5. The numerical computations show that no numerical solution can
be obtained for cases for which r < -1; this is evident from Fig. 15 which shows an
asymptotic tendency for -'(0) to infinity. Solution (6.26) for the special differential
equation (6.25) shows also that solution does not exist for r= -1, -2, -3, -4,....

/.

e

1.00

0.75 

0.5

0.5 01l --- 1.0
_--- __ 2.0

0.25 - \

1 2 3 4 5 6

Fig. 13. Calculated dimensionless temperature pro- Fig. 14. Calculated dimensionless velocity profiles for
files for fixed Pr=0.7 and varying values of T = fixed Pr = 0.7 and varying values of Tw = (t + bl)'.

(t + b,)'.

Aa

i
1~
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Fig. 15. Plot of the surface heat flux, -'(0), against r for fixed Pr = 0.7 and T = (t + b,)'.
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